Rubrique secondaire: Analyse Harmonique / Harmonic Analysis Titre français: Preuve de la conjecture de quasi-orthogonalité de Saffari pour les suites ultra-plates de polynômes unimodulaires. PROOF OF SAFFARI’S NEAR-ORTHOGONALITY CONJECTURE FOR ULTRAFLAT SEQUENCES OF UNIMODULAR POLYNOMIALS

نویسنده

  • Tamás Erdélyi
چکیده

Let Pn(z) = ∑n k=0 ak,nz k ∈ C [z] be a sequence of unimodular polynomials (|ak,n| = 1 for all k, n) which is ultraflat in the sense of Kahane, i.e., lim n→∞ max |z|=1 ∣∣∣(n + 1)−1/2|Pn(z)| − 1∣∣∣ = 0 . We prove the following conjecture of Saffari (1991): ∑n k=0 ak,nan−k,n = o(n) as n → ∞, that is, the polynomial Pn(z) and its “conjugate reciprocal” P ∗ n(z) = ∑n k=0 an−k,nz k become “nearly orthogonal” as n → ∞ . To this end we use results from [Er1] where (as well as in [Er3]) we studied the structure of ultraflat polynomials and proved several conjectures of Saffari. Preuve de la conjecture de quasi-orthogonalité de Saffari pour les suites ultra-plates de polynômes unimodulaires Résumé. Soit Pn(z) = ∑n k=0 ak,nz k ∈ C [z] une suite de polynômes unimodulaires (|ak,n| = 1 pour tout k, n) supposée ultra-plate au sens de Kahane, c.à.d. lim n→∞ max |z|=1 ∣∣∣(n + 1)−1/2|Pn(z)| − 1∣∣∣ = 0 . Nous prouvons la conjecture suivante de Saffari (1991): ∑n k=0 ak,nan−k,n = o(n) pour n → ∞, c.à.d. que le polynôme Pn(z) et son “reciproque conjugué” P ∗ n(z) = ∑n k=0 an−k,nz k deviennent “quasi-orthogonaux” lorsque n → ∞ . Pour ce faire nous employons des résultats de [Er1] où (ainsi que dans [Er3]) nous avons étudié la structure des polynômes ultra-plats et avons prouvé plusieurs conjectures de Saffari. 1991 Mathematics Subject Classification. 41A17.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rubrique secondaire: Analyse Harmonique / Harmonic Analysis Titre français: Un raffinement du théorème de Erdős-Turán sur la distribution des zéros de polynômes AN IMPROVEMENT OF THE ERDŐS–TURÁN THEOREM ON THE DISTRIBUTION OF ZEROS OF POLYNOMIALS

We prove a subtle “one-sided” improvement of a classical result of P. Erdős and P. Turán on the distribution of zeros of polynomials. The proof of this improvement is quite short and rather elementary. Nevertheless it allows us to obtain a beautiful recent result of V. Totik and P. Varjú as a simple corollary, and in a somewhat stronger form, without any use of a potential theoretic machinery. ...

متن کامل

A representation-theoretic proof of the branching rule for Macdonald polynomials

We give a new representation-theoretic proof of the branching rule for Macdonald polynomials using the Etingof-Kirillov Jr. expression for Macdonald polynomials as traces of intertwiners of Uq(gln). In the GelfandTsetlin basis, we show that diagonal matrix elements of such intertwiners are given by application of Macdonald’s operators to a simple kernel. An essential ingredient in the proof is ...

متن کامل

`-restricted Q-systems and quantum affine algebras

Kuniba, Nakanishi, and Suzuki (1994) have formulated a general conjecture expressing the positive solution of an `-restricted Q-system in terms of quantum dimensions of Kirillov-Reshetikhin modules. After presenting this conjecture, we sketch a proof for the exceptional type E6 following our preprint (2013). In types E7 and E8, we prove positivity for a subset of the nodes of the Dynkin diagram...

متن کامل

فایل کامل مجلّه مطالعات زبان فرانسه دو فصلنامه علمی پژوهشی زبان فرانسه دانشکده زبانهای خارجی دانشگاه اصفهان

Tâ ÇÉÅ wx W|xâ Revue des Études de la Langue Française Revue semestrielle de la Faculté des Langues Étrangères de l'Université d'Ispahan Cinquième année, N° 8 Printemps-Eté 2013, ISSN 2008- 6571 ISSN électronique 2322-469X Cette revue est indexée dans: Ulrichsweb: global serials directory http://ulrichsweb.serialssolutions.com Doaj: Directory of Open Access Journals http://www.doaj.org ...

متن کامل

Special Cases of the Parking Functions Conjecture and Upper-Triangular Matrices

We examine the q = 1 and t = 0 special cases of the parking functions conjecture. The parking functions conjecture states that the Hilbert series for the space of diagonal harmonics is equal to the bivariate generating function of area and dinv over the set of parking functions. Haglund recently proved that the Hilbert series for the space of diagonal harmonics is equal to a bivariate generatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013